CITY OF CARLSBAD
ENGINEERING STANDARDS

VOLUME 1 - GENERAL DESIGN STANDARDS

TABLE OF CONTENTS

CHAPTER 1 – General Design Criteria
CHAPTER 2 – Standards for the Digital Submittal of Maps and Plans
CHAPTER 3 – Public Street and Traffic Standards
CHAPTER 4 – Private Street and Traffic Standards
CHAPTER 5 – Drainage and Storm Drain Standards
CHAPTER 6 – Design Criteria for Gravity Sewer Lines and Appurtenances
CHAPTER 7 – Grading, Site Drainage and Low Impact Development (LID) Standards

<table>
<thead>
<tr>
<th>CHAPTER/PAGE/DWG.</th>
<th>ITEM</th>
<th>REVISION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1, Page 4</td>
<td>Table A – City of Carlsbad Street Design Criteria</td>
<td>10/19/05</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Incorporate LID to grading standards</td>
<td>3/24/08</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Various Revisions Throughout</td>
<td>6/30/08</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Table A, minimum easement width</td>
<td>11/30/09</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Public street standards, street light standards</td>
<td>11/30/09</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Revisions to Caltrans references, private street standards</td>
<td>11/30/09</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Revisions to digital submittal standards</td>
<td>2/24/12</td>
</tr>
<tr>
<td>General</td>
<td>Added statement declaratory of current policy to TOC</td>
<td>11/21/12</td>
</tr>
<tr>
<td>Chapter 1-7</td>
<td>Update general design criteria, accessibility standards, intersection max slopes, BMP Design Manual reference</td>
<td>2/16/16</td>
</tr>
</tbody>
</table>
CHAPTER 1 – GENERAL DESIGN CRITERIA

1. This criteria shall apply to all public works, private roads and grading design within the City of Carlsbad which is subject to the review of the City Engineer.

2. All drawings shall be on standard size sheets (24” x 36”) with standard City title block. The margin at the 24” right side of the sheet shall be one inch; the balance of the margins shall be one-half inch. All lettering shall be 1/8” or larger with hand lettering, 1/10” or larger for machine lettering. California coordinates shall be computed and included for each plan.

3. All title sheets shall have an index or key map clearly indicating the sheet numbers issued. All index maps shall be drawn showing overall layout of the water, sewer (including required future extensions), storm drain, fire hydrants, and street signing and lighting systems. The Engineer of Work should utilize City Standard sheets, General Notes, and Erosion Control Plans to expedite the plancheck process. These sheets are available at the Engineering counter. They are also available in digital AutoCad data file format.

4. Each sheet is to be signed and sealed by a Registered Civil Engineer. Complex structural, electrical or mechanical installations shall also be signed by the Registered Engineer doing the design. When a soils report is required, plans shall be signed by the Soils Engineer and/or Geologist. In addition, all calculations, plats and reports shall be signed and sealed by the engineer responsible for the design.

5. Revisions made after original approval by the City Engineer shall be initialed by the Engineer of Work and submitted to the City Engineer for approval. Plan revisions must be signed off by the City Engineer or designee prior to construction of the revised improvement.

6. All plans are to be designed and constructed in accordance with this design criteria, San Diego Regional Standard Drawings (SDRSD), Standard Specifications for Public Works Construction (SSPWC), California Department of Transportation Traffic and Highway Design Manuals, applicable AASHTO Design Policies, San Diego County Hydrology Manual, San Diego County Map Processing Manual, City of Carlsbad Technical Guidelines for Geotechnical Reports and City of Carlsbad “Criteria”, all latest editions.

7. Profiles shall be shown on the top of sheets. Vertical curves shall show curve length and P.I. elevation, in addition to normal stationing and elevations.

8. Normally, the scales for improvement plans shall be 1” = 40’ for the horizontal and 1” = 4’ for the vertical. The vertical scale should be changed to 1” = 8’ or other appropriate scale where grades are steep. For complex plans, the scale shall be 1” = 20’ or larger when necessary for clarity.

9. Improvement and grading plans shall be prepared in indelible ink on mylar drafting film or reproduced by photo mylar (sepia, ammonia mylar or vellum are unacceptable) unless otherwise approved by the City Engineer. Additionally, digital copies of the plans shall be submitted per the City of Carlsbad “Standards for the Digital Submittal of Maps and Plans” available at the Land Use Engineering counter and attached herewith in Chapter 2.
10. Public easements shall be a minimum of 20’ in width for single facilities, 30’ in width for two facilities unless a lesser width is specifically authorized by the City Engineer. Approved means of all-weather access to the easement must be provided. Utility and drainage easements parallel to side lot lines shall be laid out so that the easement is all on one lot. Easements between existing and/or future dwelling units or building structures shall be a minimum of 20’ in width for single facilities.

11. Drainage calculations and maps shall accompany all plans submitted for checking, unless the requirement is specifically waived.

12. All plans, calculations and reports are to be checked by the Engineer of Work (EOW) for consistency, accuracy, clarity and conformity with City Standard Specifications, drawings, and design criteria before submission for City review and approval. The EOW is responsible for coordinating plans with their clients Landscape Architect, utility companies and permitting agencies.

13. All plans, calculations and reports submitted for checking shall be accompanied by a letter of transmittal, submittal checklist, and all applicable fees based on the Engineer's Estimate of quantities and costs.

14. During final approval submittal, Engineer-of-work shall submit digital (pdf) copies of all calculations/reports/studies in accordance with city submittal checklists to the satisfaction of the City Engineer. Digital copies shall include color resolution from the original document used to distinguish symbols, photographs, tables, exhibits, etc.

14. The original check prints shall accompany revised plans resubmitted for checking.

15. Original drawings shall become the property of the City upon being signed by the City Engineer.

16. The original drawing shall be revised to reflect as-built conditions by the Engineer of Work prior to final acceptance of the work by the City.

17. The Engineer-of-work shall submit maps of any proposed subdivision, drawn to a scale 1” = 500’, prior to City approval of the final subdivision map. These maps will be used to update City of Carlsbad Fire Department run books.

18. The number of sheets submitted should normally be limited to that required for clarity of presentation. Separate drawings for streets, water, storm drains, and sewers will not normally be accepted.

19. Improvement plans shall show all existing trees within the street parkway and within 5’ outside the right-of-way and specifically designate those to be removed. Any tree within the right-of-way to be removed must have specific approval to do so by the City Engineer.

20. The carlsbad engineering standards are prepared and maintained by the city of carlsbad land development engineering division, with input from other departments. The standards establish uniform policies and procedures for the design of public improvements. It is not intended as, nor does it establish, a mandatory standard for these designs. The policies established in the engineering standards are for the information and use by Engineers,
designers and city staff. The standards are subject to amendment as conditions and experience warrant. Special situations may call for variation from the standards, to the satisfaction of the city engineer. The standards are not a substitute for engineering knowledge, experience or judgement. It is not intended that any standard of conduct or duty toward the public shall be created or imposed by the publication of these standards.

21. All plans, specifications, and supporting documents shall be signed and sealed by the Engineer in responsible charge of the work prior to City Engineer’s approval. Each sheet shall be signed and sealed, except that bound documents may be signed and sealed on their first page. Additionally, the first sheet of each set of plans shall have the following certificate:

"DECLARATION OF RESPONSIBLE CHARGE"

I hereby declare that I am the Engineer of Work for this project, that I have exercised responsible charge of the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with current standards.

I understand that the check of project drawings and specifications by the City of Carlsbad does not relieve me, as Engineer of Work, of my responsibilities for project design.

Firm:__
Address:__
City, State:___
Telephone:___
By:___
(Name of Engineer)
Date:__
R.C.E. #:__
Registration Expiration Date:__
22. After City Engineer's approval of a set of plans, if a new engineer assumes responsible charge of the work, he/she shall add, sign and seal the following statement in each sheet:

"ASSUMPTION OF RESPONSIBLE CHARGE"

As of _____________________, I hereby assume responsible charge for design changes to this drawing.

RCE#__________ Exp. ____________

(Name)

Firm:__

Address:__

Telephone:_________________________
TABLE A
CITY OF CARLSBAD
STREET DESIGN CRITERIA

<table>
<thead>
<tr>
<th>DESIGN CLASSIFICATION</th>
<th>PRIME ARTERIAL</th>
<th>MAJOR ARTERIAL</th>
<th>SECONDARY ARTERIAL</th>
<th>COLLECTOR STREET</th>
<th>INDUSTRIAL STREET</th>
<th>LOCAL STREET</th>
<th>CUL-DE-SAC STREET</th>
<th>ALLEY</th>
<th>HILLSIDE STREET</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIQUE ADT RANGES</td>
<td>40,000 OR MORE</td>
<td>20,000 TO 40,000</td>
<td>10,000 TO 20,000</td>
<td>2,000 TO 10,000</td>
<td>----</td>
<td>20 TO 2,000</td>
<td>20 TO 1000</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Design Speed</td>
<td>60 MPH</td>
<td>50 MPH</td>
<td>40 MPH</td>
<td>30 MPH</td>
<td>30 MPH</td>
<td>25 MPH</td>
<td>25 MPH</td>
<td>----</td>
<td>20 MPH</td>
</tr>
<tr>
<td>Minimum Spacing of Intersections (including right-turn in/out) (in feet)</td>
<td>2,600</td>
<td>1,200</td>
<td>600</td>
<td>300</td>
<td>300</td>
<td>150 T’s others 200</td>
<td>150 T’s others 200</td>
<td>----</td>
<td>150</td>
</tr>
<tr>
<td>Right-of-Way Width (in feet)</td>
<td>126</td>
<td>102</td>
<td>84</td>
<td>60 or 68</td>
<td>72</td>
<td>60/68</td>
<td>56/68</td>
<td>60/68</td>
<td>64</td>
</tr>
<tr>
<td>Private Access to Adjoining Property</td>
<td>None</td>
<td>None</td>
<td>Where no other access is possible</td>
<td>Limited subject to approval</td>
<td>Limited subject to approval</td>
<td>O.K.</td>
<td>O.K.</td>
<td>O.K.</td>
<td>Limited subject to approval</td>
</tr>
<tr>
<td>Curb-to-Curb Distance (in feet)</td>
<td>106 (18’ median)</td>
<td>82 (18’ median)</td>
<td>64</td>
<td>40 or 48</td>
<td>52</td>
<td>34/42</td>
<td>36/42</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Minimum Traffic Index</td>
<td>9</td>
<td>8.5</td>
<td>8.0</td>
<td>6.0</td>
<td>7.0</td>
<td>5.0</td>
<td>4.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Minimum Structural Section (in inches) (6)</td>
<td>6 AC 6 AB</td>
<td>5 AC 6 AB</td>
<td>4 AC 6 AB</td>
<td>4 AC 6 AB</td>
<td>4 AC 6 AB</td>
<td>4 AC 4 AB (10)</td>
<td>4 AC 4 AB (10)</td>
<td>5-1/2” PCC (8)</td>
<td>4 AC 4 AB (10)</td>
</tr>
<tr>
<td>Stopping Sight Distance (5) (in feet)</td>
<td>580</td>
<td>430</td>
<td>300</td>
<td>200</td>
<td>200</td>
<td>150</td>
<td>150</td>
<td>----</td>
<td>125(2)</td>
</tr>
<tr>
<td>Corner Sight Distance (9) (in feet)</td>
<td>660</td>
<td>550</td>
<td>440</td>
<td>330</td>
<td>330</td>
<td>275</td>
<td>275</td>
<td>----</td>
<td>220</td>
</tr>
<tr>
<td>Minimum Centerline Radius (in feet)</td>
<td>2,400 (6)</td>
<td>1,400 (6)</td>
<td>670</td>
<td>300</td>
<td>300</td>
<td>200</td>
<td>200</td>
<td>----</td>
<td>200</td>
</tr>
<tr>
<td>Maximum Centerline Grade (not thru intersection) (4)</td>
<td>7%</td>
<td>7%</td>
<td>10%</td>
<td>12% (3)</td>
<td>8%</td>
<td>12% (10)</td>
<td>12% (10)</td>
<td>----</td>
<td>15% (10)</td>
</tr>
<tr>
<td>Minimum Flowline Grade</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

NOTES:

(1) N.A.
(2) Reduction to 100’ with approval of City Engineer.
(3) Grades greater than 10% will require specific approval, chip seal, etc.
(4) Maximum intersection grades must comply with federal, state, and local accessibility standards, subject to City Engineer approval. Consult with PROWAG, Caltrans accessibility guidelines or a Certified Accessibility Specialist person (CASp).
(5) Stopping Sight Distance per CALTRANS Highway Design Manual Topic 201 and Volume 3 Section 8 in Chapter 3 of City Standards.
(6) Assumes no superelevations; includes standard crossfall.
(7) Minimum grade of 2.0% is encouraged. If 1.0% minimum is not possible, special construction may be used with City Engineer approval. Gutter line of cul-de-sac bulbs and knuckles shall have minimum grade of 1.0%. Typical centerline grades at the upper reach of cul-de-sacs shall be 2% minimum.
(8) Alley sections shall conform to SDRSD G-21.
(9) Corner Sight Distance per Caltrans Highway Design manual Topic 405 and Volume 3 Section 8 in Chapter 3 of City Standards.
(10) PCC pavement required for grades over 10%
(11) 28-foot clear travel way required where adjacent lots contain any portion of a Fire Hazard Zone/Fire Suppression Zone within the property line.
(12) 36-foot curb-to-curb distance permissible when serving 24 or fewer lots and where adjacent lots do not contain any portion of a Fire Hazard Zone/Fire Suppression Zone within the property line.
CHAPTER 2 – STANDARDS FOR THE DIGITAL SUBMITTAL OF MAPS AND PLANS

1.0 INTRODUCTION

The City of Carlsbad maintains a Geographic Information System (GIS) for use by all City Departments. Major components of the GIS are parcels and public works facilities. To improve the efficiency of data collection and use in city operations such as development processing services, public works maintenance and operations, public safety activities (Police/Fire) and habitat protection, the City of Carlsbad requires the submission of digital copies along with the required number of hardcopies for the submittal of all Final Maps, Grading Plans, and Improvement Plans. These requirements do not affect in any way existing requirements of other departments regarding map/plan processing. See Section 4 for details of data file content and organization.

Exceptions from these requirements may be made with the express permission of the Engineer Manager, Land Development Engineering.

For further information or clarification of this specification, contact:

Transportation Department
City of Carlsbad
1635 Faraday Avenue
Carlsbad CA 92008
(760) 602-2769 (Engineering)

2.0 FORMAT OF DATA FOR DIGITAL SUBMITTAL

The acceptable formats for digital submittal of the data are:

AutoCAD Release 2012 or earlier (Autodesk) .dwg or .dxf format

3.0 BASIS OF BEARINGS AND COORDINATE REFERENCE

The basis of bearings and all coordinates of data submitted to the City must be in reference to the California Coordinate System - 1983, Zone VI, 1991.35 Epoch, North American Datum of 1983 (NAD83) based on ties to the City of Carlsbad Survey Control Network monuments as published on Record of Survey Map No. 17271, filed in the office of the San Diego County Recorder on February 8, 2002. The coordinate ties in the digital submission must meet third order accuracy from the control monuments to the project boundary. The project boundary will be located in the California Coordinate System at a common tie point. All other coordinates and line work will be scaled to ground distances and be within 0.5 feet of the true California Coordinate System values. For vertical control, the NGVD 29 datum is still in effect.

NOTE: Use the “Xref” AutoCAD command with “CBD_ROS_NAD83.dwg” and “City Map_NAD83.dwg” to verify project site location (insert point (0,0,0).)
4.0 DATA LAYERING REQUIREMENTS

Final Maps, Parcel Maps - will consist of:

- file(s) of the entire map submittal area;
- layers description (digital file/hard copy)

Improvement Plans - will consist of:

- file(s) of the entire plan submittal area;
- layers description (digital file/hard copy)

Grading Plans - will consist of:

- file(s) of the entire plan submittal area;
- layers description (digital file/hard copy)

NOTE: The model space of the submitted drawings should contain the entire project (showing property lines, improvements, etc.) and it should not be divided into sheets (used for plotting purposes.)

The City of Carlsbad Standard layers are as described in Tables 4.1 (Final Maps, Parcel Maps), 4.2 (Improvement Plans), and 4.3 (Grading Plans).
Digital submittals are to follow the City of Carlsbad layer format, or be accompanied by a digital file or hardcopy sheet describing layer names and symbol descriptions.

<table>
<thead>
<tr>
<th>LAYER NAME</th>
<th>LAYER CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACREAGE</td>
<td>net acreage text</td>
</tr>
<tr>
<td>BASE</td>
<td>north arrow, location map, etc.</td>
</tr>
<tr>
<td>COORD</td>
<td>coordinate values & tic marks</td>
</tr>
<tr>
<td>COV</td>
<td>cover sheet information</td>
</tr>
<tr>
<td>EASE</td>
<td>public/private easement lines</td>
</tr>
<tr>
<td>FLOOD</td>
<td>100 year flood lines and text</td>
</tr>
<tr>
<td>HATCH</td>
<td>hatching & shading</td>
</tr>
<tr>
<td>LOTS</td>
<td>lot lines, other property lines, and associated text</td>
</tr>
<tr>
<td>MON</td>
<td>monumentation markers and associated text</td>
</tr>
<tr>
<td>POS</td>
<td>procedure of survey lines and associated text</td>
</tr>
<tr>
<td>ROW</td>
<td>right-of-way easement lines and associated text</td>
</tr>
<tr>
<td>STCL</td>
<td>street centerline lines and associated text</td>
</tr>
<tr>
<td>STREAM</td>
<td>streams</td>
</tr>
<tr>
<td>STROW</td>
<td>street right-of-way lines and associated text</td>
</tr>
<tr>
<td>THALWEG</td>
<td>watercourse thalwegs</td>
</tr>
<tr>
<td>LAYER NAME</td>
<td>LAYER CONTENTS</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ACCESS</td>
<td>access covers (size, type, % grade)</td>
</tr>
<tr>
<td>APN</td>
<td>assessor parcel number text</td>
</tr>
<tr>
<td>BASE</td>
<td>north arrow, location map, etc.</td>
</tr>
<tr>
<td>COORD</td>
<td>coordinate values & tic marks</td>
</tr>
<tr>
<td>COV</td>
<td>cover sheet information</td>
</tr>
<tr>
<td>CURB</td>
<td>curbs, berms, sidewalks</td>
</tr>
<tr>
<td>EASE</td>
<td>public/private easement lines</td>
</tr>
<tr>
<td>EXGRDIDX</td>
<td>existing grade index contours & text</td>
</tr>
<tr>
<td>EXTGRADE</td>
<td>existing grade contours and text</td>
</tr>
<tr>
<td>FINGRADE</td>
<td>finished grade contours and text</td>
</tr>
<tr>
<td>FINGRDIDX</td>
<td>finish grade index contours & text</td>
</tr>
<tr>
<td>FLOOD</td>
<td>100 year flood lines and associated text</td>
</tr>
<tr>
<td>FLOW</td>
<td>swales, direction of flow</td>
</tr>
<tr>
<td>FPRINT</td>
<td>footprints of buildings</td>
</tr>
<tr>
<td>GRID</td>
<td>grid & grid numerical values for street & utility profiles</td>
</tr>
<tr>
<td>HATCH</td>
<td>hatching & shading</td>
</tr>
<tr>
<td>INOUT</td>
<td>inlets/outlets</td>
</tr>
<tr>
<td>IRRCOND</td>
<td>irrigation conduit</td>
</tr>
<tr>
<td>IRRCONTR</td>
<td>irrigation controllers</td>
</tr>
<tr>
<td>IRRPIPE</td>
<td>irrigation pipe</td>
</tr>
<tr>
<td>LANDSCPLT</td>
<td>landscape planting</td>
</tr>
<tr>
<td>LANDSCTXT</td>
<td>landscape text</td>
</tr>
<tr>
<td>LOTS</td>
<td>lot lines, other property lines, and associated text</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>medians</td>
</tr>
<tr>
<td>MON</td>
<td>monumentation markers and associated text</td>
</tr>
<tr>
<td>PERCENT</td>
<td>percentages</td>
</tr>
<tr>
<td>POS</td>
<td>procedure of survey text and associated text</td>
</tr>
<tr>
<td>PUBLECOH</td>
<td>public utilities - electrical: overhead</td>
</tr>
<tr>
<td>PUBLECUUG</td>
<td>public utilities - electrical: underground</td>
</tr>
<tr>
<td>PUBGAS</td>
<td>public utilities - gas distribution</td>
</tr>
<tr>
<td>PUBHYDR</td>
<td>public utilities - fire hydrants</td>
</tr>
<tr>
<td>PUBTELE</td>
<td>public utilities - telephone boxes</td>
</tr>
<tr>
<td>PUBTV</td>
<td>public utilities - cable TV</td>
</tr>
<tr>
<td>PUBWATER</td>
<td>public utilities - water supply</td>
</tr>
<tr>
<td>RAMP</td>
<td>ramps</td>
</tr>
<tr>
<td>RECWPROF</td>
<td>reclaimed water profile</td>
</tr>
<tr>
<td>ROW</td>
<td>right-of-way easement lines</td>
</tr>
<tr>
<td>SEWERSYS</td>
<td>sewer main and associated text</td>
</tr>
<tr>
<td>SEWPROF</td>
<td>sewer profile</td>
</tr>
<tr>
<td>LAYER NAME</td>
<td>LAYER CONTENTS</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>SPOTELEV</td>
<td>spot elevations markers and text</td>
</tr>
<tr>
<td>STCL</td>
<td>street centerline lines and associated text</td>
</tr>
<tr>
<td>STLIGHT</td>
<td>elecrotliers</td>
</tr>
<tr>
<td>STLTCOND</td>
<td>street lighting conduits & junction boxes</td>
</tr>
<tr>
<td>STORMDRN</td>
<td>culvert and storm drain profiles and associated text</td>
</tr>
<tr>
<td>STPROF</td>
<td>street profile</td>
</tr>
<tr>
<td>STREAM</td>
<td>streams</td>
</tr>
<tr>
<td>STRMPROF</td>
<td>storm drain profile</td>
</tr>
<tr>
<td>STROW</td>
<td>street right of way lines and associated text</td>
</tr>
<tr>
<td>STSIGN</td>
<td>street name signs</td>
</tr>
<tr>
<td>STSTRIPE</td>
<td>traffic striping</td>
</tr>
<tr>
<td>THALWEG</td>
<td>watercourse thalwegs</td>
</tr>
<tr>
<td>TREE</td>
<td>trees (4” diameter or greater)</td>
</tr>
<tr>
<td>TSTSIGCOND</td>
<td>traffic signal conduit</td>
</tr>
<tr>
<td>TSIGN</td>
<td>regulatory & advisory signs</td>
</tr>
<tr>
<td>TSIGN</td>
<td>traffic signals</td>
</tr>
<tr>
<td>TSIGN</td>
<td>traffic signals and associated text</td>
</tr>
<tr>
<td>WALKS</td>
<td>footprints of walks</td>
</tr>
<tr>
<td>WATPROF</td>
<td>water line profile</td>
</tr>
<tr>
<td>XTREE</td>
<td>trees to be removed</td>
</tr>
<tr>
<td>LAYER NAME</td>
<td>LAYER CONTENTS</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ACCESS</td>
<td>access covers (size, type, % grade)</td>
</tr>
<tr>
<td>APN</td>
<td>assessor parcel number text</td>
</tr>
<tr>
<td>BASE</td>
<td>north arrow, location map, etc.</td>
</tr>
<tr>
<td>COORD</td>
<td>coordinate values & tic marks</td>
</tr>
<tr>
<td>COV</td>
<td>cover sheet information</td>
</tr>
<tr>
<td>CURB</td>
<td>curbs, berms, sidewalks</td>
</tr>
<tr>
<td>EASE</td>
<td>public/private easement lines</td>
</tr>
<tr>
<td>EXGRDIDX</td>
<td>existing grade index contours & text</td>
</tr>
<tr>
<td>EXTGRADE</td>
<td>existing grade contours and text</td>
</tr>
<tr>
<td>FINGRADE</td>
<td>finished grade contours and text</td>
</tr>
<tr>
<td>FINGRDIDX</td>
<td>finish grade index contours & text</td>
</tr>
<tr>
<td>FLOOD</td>
<td>100 year flood lines and text</td>
</tr>
<tr>
<td>FLOW</td>
<td>swales, direction of flow</td>
</tr>
<tr>
<td>FTPRINT</td>
<td>footprints of buildings</td>
</tr>
<tr>
<td>HATCH</td>
<td>hatching & shading</td>
</tr>
<tr>
<td>INOUT</td>
<td>inlets/outlets</td>
</tr>
<tr>
<td>LANDSCPLT</td>
<td>landscape planting</td>
</tr>
<tr>
<td>LANDSCTXT</td>
<td>landscape text</td>
</tr>
<tr>
<td>LOTS</td>
<td>lot lines, other property lines, and associated text</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>medians</td>
</tr>
<tr>
<td>PERCENT</td>
<td>percentages</td>
</tr>
<tr>
<td>POS</td>
<td>procedure of survey text and associated text</td>
</tr>
<tr>
<td>PUBGAS</td>
<td>public utilities - gas distribution</td>
</tr>
<tr>
<td>PUBHYDR</td>
<td>public utilities - fire hydrants</td>
</tr>
<tr>
<td>PUBTELE</td>
<td>public utilities - telephone boxes</td>
</tr>
<tr>
<td>PUBWATER</td>
<td>public utilities - water supply</td>
</tr>
<tr>
<td>RAMP</td>
<td>ramps</td>
</tr>
<tr>
<td>ROW</td>
<td>right-of-way easement lines and associated text</td>
</tr>
<tr>
<td>SEWERSYS</td>
<td>sewer main and associated text</td>
</tr>
<tr>
<td>SPOTELEV</td>
<td>spot elevations markers and text</td>
</tr>
<tr>
<td>STCL</td>
<td>street centerline lines and associated text</td>
</tr>
<tr>
<td>STORMDRN</td>
<td>culvert and storm drain profiles and associated text</td>
</tr>
<tr>
<td>STREAM</td>
<td>streams</td>
</tr>
<tr>
<td>STROW</td>
<td>street right-of-way lines and associated text</td>
</tr>
<tr>
<td>THALWEG</td>
<td>watercourse thalwegs</td>
</tr>
<tr>
<td>TREE</td>
<td>trees (4” diameter or greater)</td>
</tr>
<tr>
<td>T SIGNAL</td>
<td>traffic signals</td>
</tr>
<tr>
<td>T SIGNAL</td>
<td>traffic signals and associated text</td>
</tr>
<tr>
<td>WALKS</td>
<td>footprints of walks</td>
</tr>
<tr>
<td>XTREE</td>
<td>trees to be removed</td>
</tr>
</tbody>
</table>
5.0 ACCEPTABLE MEDIA

The City will accept submissions of the required digital files on the following media:

- PC-formatted Compact Disk (CD)
- PC-formatted Digital Versatile Disk (DVD)

The submitter will be responsible for archival of the digital data until final acceptance. If possible do not archive (compress) the files.

Please include all the necessary files on your submittal disk (i.e. XREF-ed files, fonts). (The easiest way to accomplish this is by using the Pack’n Go or E-Transmit feature from AutoCAD).

All media will be submitted with labels indicating the following information:

Project Name/Number
Date
Company
Contact Name/Telephone Number/Email
File Names (see below for file naming conventions)

6.0 FILE NAMING CONVENTIONS

The files will be named according to the plan name with the extension .DWG or .DXF for CAD-type files. Examples:

- Carlsbad Tract Map No. 98-93
 CT9893.dwg
- Minor Subdivision 89-01
 MS8901.dwg
- Improvement Plan 360-3B
 I360-3B.dwg
- Grading Plan 360-3A
 G360-3A.dwg
CHAPTER 3 - PUBLIC STREET AND TRAFFIC STANDARDS

1. WIDTHS

 A. All street classifications shall conform to the latest adopted Circulation Element of the General Plan and any special plan thereto (refer to Supplemental Standard Drawing GS-1).

 B. Street widths shall be in accordance with Table A.

 C. Intersection of arterials, depending on estimated traffic volumes, may require special design. The use of single and double left-turn lanes, free right-turn lanes, right-turn islands, raised medians, etc., may be required.

 D. Where feasible, when streets are improved for only one-half width, the unimproved half shall drain away from the paved section and shall be provided with a paved ditch or adequate drainage facility, as approved by the City Engineer. A 2” x 6” redwood header shall be required at the edge of paving.

 E. Where half-street improvements are required for streets, the developer of the first half is required to install the half-street section plus 12′ of additional paving except for secondary, prime or major arterials.

 F. Local residential streets may be required to incorporate traffic calming measures as approved by the City Engineer. These measures may include: pop-outs, chokers, pavement treatment, medians, round-a-bouts, and traffic circles. Special Fire Department and Police Department approvals may be required.

2. GRADINGS

 A. Vertical curves are required when grade breaks exceed 1.5%.

 B. Normal crown slope on A.C. pavement shall be 2.0%.

 C. The design, layout and location of pedestrian ramps shall comply with federal, state and local accessibility requirements. Engineer shall design pedestrian ramps and crossings in accordance with PROWAG, Caltrans Design guidelines (latest version) to the satisfaction of the City Engineer. Engineer shall incorporate additional detail and/or construction notes on the plans to address these requirements. In special circumstances, consult with a Certified Accessibility Specialist person (CASp).

 D. Grades greater than 10% shall be constructed of Portland Cement Concrete and shall have a rough texture surface. Grades steeper than 12% or 12% grades in excess of 400’ in length require the prior approval of the City Engineer and the Fire Marshal.

 E. All street plans shall extend horizontal and vertical design a minimum of 200′ beyond property line to demonstrate the feasibility of future extension. For collector streets and above, an extension of a minimum 500′ shall be shown. Longer extensions may be required by the City Engineer. For newly developing areas, an alignment study may be required with each project to
show "overall circulation picture."

F. For all collector-to-arterial and arterial-to-arterial intersections, the improvement plans shall include a 20-scale plan view of the intersection detailing surface elevations on 10’ x 10’ grid locations. Extend grid elevations to a minimum of 50’ beyond the BCR (similar requirements for collector-to-collector intersections may be required.)

G. All street widening plans shall include working copies of cross-sections not to exceed 50’ on center. Additional cross-sections may be required where design situations develop.

3. **ALIGNMENT**

A. Streets shall normally intersect at right angles. Local streets shall have at least 50’ of tangent adjacent to an intersection, measured from extension of the curb face. Collectors shall have at least 100’. Arterials will require special design. An angle of intersection more than 10° from a right angle requires special approval and design. Hillside terrain will require special design.

B. The centerline of streets entering upon opposite sides of any given street shall normally be offset by at least 200’ for local residential streets measured from centerline to centerline. Cul-de-sac streets shall normally be designated as "T" type intersections, and may be offset at 150’.

C. Single entry developments may be permitted when the single entry street meets the following standards:

1) With special approval of the City Fire Marshal, a 36-foot curb-to-curb residential street that serves 20 or less units. If any portion of an adjacent lot is impacted by a Fire Hazard/Fire Suppression Zone, a 42-foot curb-to-curb distance is required.

2) With special approval of the City Fire Marshal and City Engineer, a 40-foot curb-to-curb residential street that serves 50 or less units, where all units are equipped with automatic fire sprinkler systems. If any portion of an adjacent lot is impacted by a Fire Hazard/Fire Suppression Zone, a 42-foot curb-to-curb distance is required.

3) With special approval of the City Fire Marshal and City Engineer, a 4-lane secondary arterial with a raised median or major arterial and all of the following conditions are met:

 a) The length of street does not exceed one-half mile.
 b) Traffic volume at entrance does not exceed 3000 ADT.
 c) All buildings are equipped with automatic fire sprinkler systems

4) With special approval of the City Fire Marshal and City Engineer a 52-foot wide curb-to-curb industrial street and all of the following conditions are met:

 a) The length of street does not exceed one-half mile.
b) Traffic volume at entrance does not exceed 3000 ADT.
c) All buildings are equipped with automatic fire sprinkler systems

D. Minimum length of tangent between reversing curves shall be 100'. A lesser length may be used for local streets or hillside streets with the approval of the City Engineer.

E. All corner returns for local and residential collector streets shall have a minimum 20' property line radius; arterial streets shall have a minimum property line radius of 25'. Arterial streets may require special design.

4. STRUCTURAL SECTION

A. Design shall be for a 20 year service life in accordance with the California Department of Transportation Highway Design Manual.

B. The preliminary design structural section shall be based upon recommendations contained in the preliminary soils report. Verification tests and core samples are required. When sub-grade is exposed, specific "R" value tests shall be performed in accordance with California Test Method (CTM) 301 by a qualified soils laboratory at locations approved by the City. If recommendations are less than the minimum thickness for the proposed roadway, the City's minimum standard structural section shall be used. In either case, the City Engineer shall review the "R" value tests and approve the recommendations for thickness of the structural section prior to placement of base and asphaltic concrete pavement.

C. Sub-grade samples having R-values less than 12 require special design by the soils engineer. Lime treatment may be considered if the subgrade is to be lime treated then it shall be rerun using hydrated lime and both the non-treated and treated samples shall be submitted for review and approval. Percent lime for R-value tests will be determined by the soils engineer. The sulfate content of the soil to be treated will be determined by CTM 417 and reported. Caltrans form TL-361 shall be submitted with structural section submittal. The minimum lime treated subgrade thickness shall be 8". The lime treated section shall be in accordance with Section 301-5, SSPWC. The soils engineer shall supervise and provide quality control during the soil stabilization process.

D. Extend aggregate base of roadway under curb/gutter to 6" behind back of curb. Thickness of aggregate base shall be the same as the approved structural section to a maximum of 6".

5. CURBS

A. Use 6" curb face with 18" gutter (SDRSD G-2) unless 8" is required for drainage.

B. Median curbs shall be per GS-18.
6. **CROSS-GUTTERS**

 A. All cross-gutters shall be 10' minimum width and conform with San Diego Regional Standard Drawing G-12, unless otherwise approved by the City Engineer.

 B. No cross-gutters shall be allowed on streets classified above collector. Any variance will require the specific approval of the City Engineer.

 C. Mid-block cross gutters are only allowed with specific approval of the City Engineer.

7. **SIDEWALKS**

 A. Sidewalks shall be installed along both sides of all streets except hillside streets and shall be located non-contiguous with the curb for local residential streets unless an alternate location is approved by the City Engineer.

 B. The minimum width for sidewalks in any zone shall be 5.0'. A 4.0' minimum clearance shall be maintained around all obstructions such as street lights, mailboxes, fire hydrants, guardrail, etc. Transitions at obstacles shall be four-to-one (4:1). Sidewalks around curb returns shall be widened on all collector and above designated arterials to provide for future traffic signals, street lights and mounting posts and handicap ramps.

 C. Sidewalk ramps shall be required at all intersections where sidewalks are required and shall conform with the plans and SDRS Drawings or as directed by the City Engineer.

 D. Meandering sidewalks require prior approval from the City Engineer.

8. **SIGHT DISTANCE**

 B. Intersection Sight Distance: The design of intersection sight distance within the City will be governed by Topic 405 of the California Department of Transportation HIGHWAY DESIGN MANUAL with the following additions and clarifications:

 1) Local/collector intersections and above follow CALTRANS requirements. Signalized intersections must be designed with corner sight distance requirements.

 2) The edge of traveled way shall be considered to be the extension of the face of curb for the purposes of determining driver setbacks. Where temporary or interim connections are made to roads without curbs and gutters, the travel way shall be the edge of pavement.
9. STREET TREES AND LANDSCAPING

A. All parkways and medians shall be landscaped and irrigated as required by City of Carlsbad Landscape Manual, Standard Drawing GS-8, and applicable Municipal Code.

B. All plans for median landscape and irrigation systems intended for public right-of-way maintenance by the City of Carlsbad shall be drawn on City standard mylar sheets and shall be filed with the improvement plans for the respective project. All other (private) landscape and irrigation plans shall be separated for review and approval by the Planning Director.

C. All irrigation systems shall delineate water main connection, meter location and all valves and backflow preventers.

D. All irrigation systems shall include flow calculations for each specific head proposed and estimated coverage/saturation projections.

E. All medians shall include drainage systems to drain runoff water, but not surface flow across streets. Medians shall be straight graded, not crowned, even in super-elevated streets. All stamped concrete shall have thickened edges and use 4" x 4" or 6" x 6" x #10 x #10 welded wire mesh. Felt shall be used on all weakened plane joints.

F. All landscape shall be designed, installed and maintained to ensure adequate provision for corner sight distances.

G. The following items are not to be located in the median: controller cabinets, backflow preventer, water meters, or any equipment which projects above the surface.

10. STREET LIGHTS

B. Spacing:

1) Street lights will be required at all intersections and spacing shall be in conformance with the attached Table B.

2) Street lights shall normally be located on the outside of curves. Mast arm length shall be 8'.

C. Luminaire:

1) Only 5,500 pupil lumen (40 watt) and 13,700 pupil lumen (100 watt) High Efficiency Induction (HEI) lights shall be used unless specific approval of the Public Works Director is obtained.
2) Traffic signal safety lighting shall be 20,600 pupil lumen (150 watt) HEI.

D. Foundations:

1) Street light foundations shall be anchor base type in accordance with SDRSD E-1 and E-2.

2) Concrete for street light and traffic signal foundations shall be 560-C-3250 per section 201-1, SSPWC.
TABLE B

CITY OF CARLSBAD
STREET LIGHT SPACING CRITERIA

<table>
<thead>
<tr>
<th>STREET CLASSIFICATION</th>
<th>RESIDENTIAL AND COMMERCIAL</th>
<th>INDUSTRIAL AND OPEN SPACE</th>
<th>ADJACENT TO SCHOOLS AND PARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime Arterial & Major Arterial Secondary Arterial</td>
<td>13,700 pupil lumen 300’ staggered 600’ meas. on ea. side</td>
<td>13,700 pupil lumen 400’ staggered 800’ meas. on ea. side</td>
<td>13,700 pupil lumen 300’ staggered 600’ meas. on ea. side</td>
</tr>
<tr>
<td>Collector</td>
<td>5,500 pupil lumen 250’ staggered 500’ meas. on ea. side</td>
<td>5,500 pupil lumen 350’ staggered 700’ meas. on ea. side</td>
<td>5,500 pupil lumen 200’ staggered 400’ meas. on ea. side</td>
</tr>
<tr>
<td>Industrial</td>
<td>5,500 pupil lumen 300’ staggered 600’ meas. on ea. side</td>
<td>5,500 pupil lumen 400’ staggered 800’ meas. on ea. side</td>
<td>~</td>
</tr>
<tr>
<td>Local</td>
<td>5,500 pupil lumen at all intersections 250’ staggered 500’ meas. on ea. side</td>
<td>5,500 pupil lumen at all intersections and at mid-block</td>
<td>5,500 pupil lumen 200’ staggered 400’ meas. on ea. side</td>
</tr>
<tr>
<td>Cul-de-Sac</td>
<td>5,500 pupil lumen at intersection at far end of bulb at mid-block if greater than 300’ in length</td>
<td>5,500 pupil lumen at intersection at far end of bulb (see industrial street if applicable)</td>
<td>5,500 pupil lumen 200’ staggered 400’ meas. on ea. side</td>
</tr>
</tbody>
</table>

NOTES:

1. Intersections of prime, major and secondary arterials with each other will require minimum lighting of 13,700 pupil lumen lights at each corner with shielding.

2. Areas of sensitive environmental or scenic concern shall require special treatment (e.g., adjacent to ocean, lagoons, and wildlife refuges).

3. The above criteria are minimum lighting requirements. Special circumstances may require additional lighting to provide for public safety. Examples of special circumstances include, but are not limited to, hidden driveway locations, high use crossings, high use driveways, very large intersections, road hazards such as dips and curves, public and private gathering points, bus stops and others.

4. 5,500 pupil lumen Lights = 40W high efficiency induction lamps.
 13,700 pupil lumen Lights = 100W high efficiency induction lamps.
11. TRAFFIC SIGNALS

A. The developer shall submit a design for the construction or modification of traffic signals which are required as a condition of that development. The design shall be in accordance with the Caltrans Standard Specifications and Standard Plans, Caltrans Traffic Manual, and the City of Carlsbad Standard Special Provisions for Construction (CCSSPC).

B. All work at or near an intersection shall include interim traffic control and replacement of loop detectors if damaged or modified.

C. Interconnect conduit and cable and advance warning devices shall be incorporated into all traffic signal designs and construction as required by the City Engineer.

D. Prior to beginning design of a traffic signal plan or modification to an existing signal, a pre-design meeting shall be held with the City Traffic Engineer or his designated representative.

E. All traffic signals shall incorporate a video detection system, Type 170E controller, Type 200SA local intersection control program and E.V.P.E. (Emergency Vehicle Preemption Equipment). The Model 332 cabinet shall be aluminum. Type III meter pedestals shall conform to Caltrans requirements and SDG&E Service Guide specifications. For advanced setback distances greater than 300 feet, Type B inductive loop detectors shall be used to augment video detection system.

F. All traffic signal plans or intersection design plans, shall include the ultimate layout of the intersection shown. Existing, proposed, and future improvements shall be shown, including utilities. An interim signing and striping plan shall be required as necessary.

G. Prior to installation of any traffic signal, written authorization from the City Engineer shall be obtained. A note to this effect shall be placed on the cover page of the signal plans.

H. All traffic signal plans shall be submitted as a separate set of improvement plans for the associated project. Plancheck fees shall be paid for this review. Therefore, include a separate estimate of construction costs with submittal.

I. For new traffic signal installations, signal cable shall be installed in lieu of individual conductors.

J. Electrical service location shall be obtained from SDG&E and shown on plans.
12. TRAFFIC SIGNING AND STRIPING

A. All collector and arterial street improvement plans shall include traffic striping and signing designs on a separate sheet(s) (1"=40'-scale recommended).

B. All striping and signing plans shall conform to the latest edition of the California Manual on Uniform Traffic Control Devices (CA MUTCD) and Standard Drawings. Additionally, street signs shall meet the requirements outlined in the "City of Carlsbad Street Sign Information and Specifications" available at the Engineering counter and attached herewith in Appendix "B".

C. All traffic signing and striping plans shall be reviewed along with the complete set of improvement plans for the associated project. Plancheck fees shall cover this review. Include estimate of construction costs with submittal.

D. The developer shall furnish and install street name and traffic signs to the satisfaction of the City Engineer.

E. Two street name signs shall be located on one Telspar post at every intersection, except signalized intersections.

F. "STOP" signs (R1-1) and STOP AHEAD (W3-1) signs shall be located on local collector intersections and above, where required by the City Engineer. STOP signs shall be augmented with a 12" white limit line and a STOP pavement legend at each location.

G. "DEAD END" (W14-1) sign shall be used when the end of the cul-de-sac cannot be seen from the intersection.

H. Other signs ("NO PARKING" or other regulatory signs) may be required by the City Engineer.

I. Street lights shall be shown on signing and striping plans.

J. Whenever possible, mount signs on street light poles.

13. TRAFFIC CONTROL PLANS

A. Pavement markings shall be in conformance with the criteria as presented in the latest edition of the California Manual on Uniform Traffic Control Devices.

B. All crosswalks, limit lines, pavement arrows and pavement legends shall be thermoplastic unless otherwise specified. All pavement arrows and legends shall be the latest version of the CalTrans metric stencil.

C. Fire hydrant pavement markers shall be included in construction of any project in conformance with SDRSD M-19.
D. When roadway improvement will impact an existing roadway in a manner not covered by the California Department of Transportation Highway Design Manual or Manual on Uniform Traffic Control Devices, improvement plans shall include traffic control/detour plans. Prior to design of control/detour plans, a pre-design meeting should be held with Engineering Department staff.

E. Detour plans and traffic control plans shall be based upon the latest edition of the California Manual on Uniform Traffic Control Devices and the Standard Specifications for Public Works Construction (Green Book). These detour plans shall be submitted accompanying improvement plans for the proposed development and conform to the provisions of Engineering Policy 29.

F. Any deviation from approved traffic control plans shall be approved by the City Engineer or his representative prior to change in field.

14. GUARDRAILS

A. Guardrails shall be provided for secondary arterials, and above, along the tops of slopes adjacent to roadways in accordance with Chapter 7-01 of the California Department of Transportation Traffic Manual or as required by the City Engineer. Guardrail may be required on local or collector streets on the outside of curves where slopes and vehicle speeds warrant.

B. Typically, sidewalks shall be located behind guardrails.

C. Guardrail shall conform with the applicable SDRSD. Additional right-of-way may be required to accommodate flare sections.

D. Guardrail shall not encroach into required intersection sight distance corridor areas.

15. DRIVEWAYS

<table>
<thead>
<tr>
<th>Multi-Family Residential/Commercial</th>
<th>MAXIMUM*</th>
<th>MINIMUM*</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34 Feet/40 Feet</td>
<td>24 Feet</td>
<td>7-1/2” PCC</td>
</tr>
<tr>
<td>Residential</td>
<td>30 Feet</td>
<td>12 Feet</td>
<td>5-1/2” PCC</td>
</tr>
</tbody>
</table>

Maximum Width: Residential - 40% of lot frontage
Commercial and Industrial - 50% of lot frontage

Typical X = 3’ "X" being the dimension of curb height transition.

*Clear width measured at bottom of "X", modification may be permitted if approved by the City Engineer.
A. Minimum clear distance between driveways on same property: 2’.

B. Minimum clear distance from property line: 3’ if sidewalk is contiguous to curb, 0’ if non-contiguous.

C. Minimum distance from curb return: 0’ - no encroachment.

D. Minimum distance from fire hydrant, street lights and other aboveground utilities: 5’.

E. Grades - see GS-15.

F. A minimum of 6” approved base material shall be placed under all driveways within the right-of-way.

G. Driveways within cul-de-sacs may require special design.

NOTE: All dimensions (A-D) are to top of “X” unless otherwise noted.

16. MONUMENTATION

A. Centerline monuments (SDRSD M-10) shall be installed at the P.I. of all curves if found within the paved roadway (otherwise at the E.C. and B.C.), at the centerline intersection of all streets, at the radius point of all cul-de-sacs, where the boundary line crosses a street centerline and at a maximum of 1000’ on straight runs. A 5.0’ offset may be used to avoid conflicts with access covers. Monuments shall be shown on improvement plans.

B. Survey tie information shall be submitted to the City Engineer for all public streets monumented. Said information shall be submitted and accepted by the City Engineer prior to release of monumentation securities.

17. HILLSIDE STREETS

A. Hillside streets shall be designed on a case-by-case basis in accordance with the general guidelines established in these Standards and Chapter 21.95 of the Carlsbad Municipal Code (Hillside Ordinance).

B. Hillside streets shall be defined as those streets which traverse landforms with a slope in excess of 25% and do so in an environmentally sensitive manner. Special consideration may also be given to streets which traverse lands with slopes between 15% and 25% with the approval of the City Engineer.

C. Hillside street design criteria are as shown on Table A. Modifications may be made to this criteria with the approval of the City Engineer on a case-by-case basis. Such modifications may include, but not be limited, to the following:

1) Split roadways which step down the hillside and reduce grading quantities.

2) Off-set crown or tipped roadway sections.

3) Deletion of sidewalks on one or both sides.
4) Reduction of tangent requirements or introduction of compound, broken back or reversed curves.

D. Where street widths have been reduced, the use of parking bays and scenic view turnouts are recommended.

E. Consistent with the Hillside Ordinance, the use of "notch" or "gunsight" road cuts through hills shall be avoided.

F. A skid resistant top course asphalt overlay will be required on all hillside streets when grades exceed 7% or where horizontal curve radii are less than 200'.

18. STREET WIDTH AND IMPROVEMENT STANDARDS VARIANCE

A. Where the literal interpretation and enforcement of these standards would result in environmental degradation or be inconsistent with the general purpose of these standards, formal written requests to vary from these standards shall be made to the City Engineer.

In all cases, the variance shall be in harmony with the general purpose and intent of the standards and with the health, safety and general welfare of the public.

B. The areas wherein the design standards for street widths and improvements may be deleted or modified, may include, but not be limited to, narrowing the right-of-way width, narrowing of the roadway width, deletion of sidewalks, deletion of curbs, separation of opposing traffic lanes around sensitive environmental features, reduction of lighting standards in sensitive environmental habitats and other design modifications consistent with the conditions and intent of this section.

C. Design standard variances as determined by the City Engineer may include, but not be limited to, street width, median width, sidewalk deletions, horizontal alignments, vertical alignments, environmental issues, or design variations that could lead to a substantial conformance issue, driveway locations, and street accessory improvements.

D. Before a standards variance may be granted, it shall be determined:

1) That there are extraordinary or unusual circumstances or conditions applicable to the situation or surrounding property necessitating a variance of the standards.

2) That the granting of such variance will not cause substantial drainage problems.

3) That the granting of such variance will not conflict with existing or future traffic and parking demands or pedestrian or bicycle use.

4) That the granting of such variance will not be detrimental to the public welfare or injurious to the property or improvements in the vicinity in which the variance is granted.

5) That the granting of such variance will not adversely affect the comprehensive general plan.
E. The applicant or other affected party may file an appeal of the decision to the City Council within ten (10) days of City Engineer's written decision.
CHAPTER 4 - PRIVATE STREET AND DRIVEWAY STANDARDS

1. ACCESS AND CIRCULATION

All commercial, industrial, and multi-unit residential driveways shall conform with the following:

A. All driveways shall be designed and constructed so as to preclude the necessity for vehicles entering the driveway to maneuver, or stack within the traveled way or to use the traveled way as a circulation element.

B. All driveways having an ADT greater than 40, or more than four (4) units, shall provide an approved turn-around or internal circulation to preclude vehicles backing onto a public or private street. Perpendicular or diagonal parking shall be discouraged on a high use driveway (see definition in Section 7) or the private street that it serves.

C. Unless approved deceleration lanes are provided, all driveways except residential, shall have a queuing area for in-bound traffic located off the traveled way that serves the driveway. The queuing area shall be no less than 10 feet wide by 20 feet long. Driveway queuing areas shall be provided at the rate of one per 1000 ADT or any fraction thereof (i.e., 3500 ADT = 80'). Queuing depth shall be measured from face of curb.

D. No parking spaces, intersections or other decision points shall be located in or served by a driveway queuing area.

E. Driveway spacing shall conform to the following:

1) No driveway will be allowed onto prime or major arterial streets unless no other access is available to the lot(s) being served. If no other access is available, a right in/out only driveway will be allowed. In this case, high use driveways must be designed with deceleration lanes. For medium and high use driveways, the right in/out driveway must be located at a point no less than one-half the required intersection spacing from any other intersection or other medium or high use driveway. Properties located such that the preceding spacing requirements cannot be met shall obtain access to the public street system via the following methods in descending order of preference:

a) Via an extension of a public street through adjacent properties. This method is preferred only when said extension is a logical addition to the public street system and meets City Design Criteria.

b) Via a private road with a non-revocable easement granted to the property being served.
c) Via a driveway on the subject property that, while otherwise not meeting the requirements of this policy, is located optimally to reduce side friction and traffic hazards on the arterial street. *Medium and high use driveways so allowed shall be made available to adjacent properties through non-exclusive easement or by dedication of a frontage road connecting the driveway and the adjacent properties.

2) *Low use driveway - shall be located per Public Street Design Criteria.

3) Joint use driveways shall be used wherever feasible. The burden of showing joint use driveways to be infeasible is the developer's. The developer must show the joint driveway to be physically impossible or that the adjacent-owner has rejected, in writing, a bonafide, good faith offer for purchase of the right.

F. *High use, multi-residential and commercial driveways shall be constructed in accordance with SDRSD G-17 except that the concrete apron shall be 7-1/2" thick. Dimension R shall be 15 feet. *Low use and medium use driveways shall be constructed in accordance with SDRSD G-14B. Throat width shall be no less than 24 feet for residential projects and 30 feet for commercial or industrial projects. Throat width shall be no more than 36 feet for residential projects and 40 feet for commercial or industrial projects. The apron length shall be no less than the throat width. Spacing for high use driveways shall be treated the same as a street intersection.

G. Driveways should be designed for 15 mph safe speed with sufficient sight distances. Maximum center line grades are as follows:

1) *Low use driveways shall have a maximum grade of +15%.
2) *Medium use driveways shall have a maximum grade of +12%.
3) *High use driveways shall have a maximum grade of +12%.

Vertical curves (minimum 5-foot length) shall be provided when grade break exceeds 5%. Fire Marshal may require PCC pavement for grades over 10%.
*(See Section 7 for driveway use definitions)

H. All driveways shall be provided, at a minimum, with stopping sight distance in accordance with the City of Carlsbad Street Design Criteria in Chapter 1.

I. Except as required by Section E.(1) above, deceleration lanes will be required or approved only on a case-by-case basis.

J. Driveways not otherwise clearly distinguishable from a public street shall be clearly and permanently marked and posted as private.

K. Excepting only deceleration lane circumstances, the angle of intersection
L. Driveway widths and percentage of frontage shall be in conformance with City Standards for Public Streets.

M. Where private streets meet public streets, Public Street Standards shall apply (access, ramps, and utilities).

N. Reciprocal access for adjacent lots shall be provided where feasible (future development shall be considered).

O. Circulation Design shall vary depending upon land use. For example, if a site changes from commercial to industrial (or vice versa) the parking, access and circulation will also change to accommodate the specific land use.

P. Dead end parking aisles over 150’ deep shall have adequate turn-around space to accommodate a maximum 3-point turn for a standard passenger vehicle. No dead end parking aisles shall have a depth over 200’.

Q. Industrial and large commercial projects shall provide for semi-truck trailer circulation and loading. The design vehicle shall be a semi-truck trailer per California Department of Transportation Highway Design Manual, Figure 404.5B.

R. Office, small commercial and light industrial, projects shall provide access and circulation for a 42’ truck or bus per California Department of Transportation Highway Design Manual, Figure 404.5F.

S. All projects shall provide access and circulation to trash enclosures. The design vehicle parameters and turning radius for a trash truck shall be the same as the truck or bus design mentioned above, Figure 404.5F.

T. All loading zones, truck bays and turn-arounds shall be free of parking stalls and obstructions. Loading zones shall not obstruct free movement and circulation of passenger cars.

2. ENTRANCES TO PLANNED DEVELOPMENTS

Entrances to planned developments shall be designed in accordance with the following criteria:

A. For private street entrances that include medians:
 1) Median widths shall be a minimum of 4 feet and a maximum of 8 feet.
 2) Median nose shall be located 15 feet minimum from the prolongation of the face of curb of the intersecting street.
 3) No portions of a private median shall be allowed in the public right-of-way.
 4) No rolled curbs allowed in medians unless specifically approved as a
traffic calming device.

5) Enhanced paving may be allowed in public right-of-way with the approval of the City Engineer and issuance of an encroachment agreement.

6) Lane widths shall be 14 feet minimum and 16 feet maximum.

B. For planned developments which include gated or guarded entrances:

1) Gated and guarded entrances shall meet all the above criteria.

2) A minimum queuing distance of 20 feet shall be provided for each 1,000 ADT or fraction thereof (i.e., 40 feet for 1001 ADT).

3) All medians shall be designed in accordance with AASHTO turning radii for P-vehicle. No more than a 3-point turn in accordance with the turning requirements of Figure 404.5F truck or bus.

4) Where the design includes a guard house, there should be enough street width so that entering vehicles can make a U-turn just past the guard house to allow turnaround if the guard has denied them entry. Provide AASHTO P-vehicle turning radius to accommodate the U-turns.

3. WIDTHS AND ALIGNMENT

A. Residential private street and drive aisle widths shall be as follows:

1) Private streets Minimum Width
 [(from 21.45.060)] Curb-to-Curb
 Two (2) lanes, parking on both sides 34/42* feet

2) Drive aisles
 Two (2) lanes, no parking 20/28* feet

 * 28-foot clear travel way required where adjacent lots contain any portion of a Fire Hazard/Fire Suppression Zone

B. Commercial/industrial parking lots and driveways:

1) Minimum aisle widths shall be in accordance with Section 21.44.050 of the Carlsbad Municipal Code.

2) Aisle width adjacent to buildings where truck loading bays are not provided shall be a minimum of 32’ wide.

3) One-way aisles shall require specific approval of the City Engineer.

C. All circulation routes as described above must be designed in accordance with City Standards and to the following design criteria:

1) Private street and private driveway traveled way widths shall conform with alignment criteria for public streets and/or Carlsbad Ordinance Section 21.45.060.
2) Standard curve radius as defined in Table A of the Street Design Criteria may be reduced provided adequate intersection sight distance is maintained in accordance with CalTrans Highway Design Manual, Topic 405.1. The sight distance corridor must be exclusive of parking, heavy landscape over 30" in height or fenced areas.

3) Right angle curves are permitted within the following guidelines:
 a) Provision is made to retain stopping sight distance per Caltrans Highway Design Manual.
 b) The maximum skew for the right angle curve does not depart more than 10 degrees from the 90 degree angle.
 c) The 90 degree angle curves are not located at or near the entrance to projects with high or medium use driveways/streets. Ninety degree curves are discouraged on high use driveways/streets.
 d) The standard knuckle design may be eliminated on apartment and condominium projects and planned developments with the City Engineer's approval.

4) A series of right angle turns or reversing curves are discouraged and will be allowed only with specific approval of the City Engineer. Standard tangent distances per Street Design Criteria Section 3(D) shall be required on all reversing curves.

4. SIDEWALKS
 A. All private streets and driveways shall provide for pedestrian and handicapped access (accessibility requirements) to all units or buildings proposed.
 B. Unless otherwise approved, sidewalks are required on both sides of all private streets and drives to provide access to all units, parking and recreation areas in a planned development or condominium project. Sidewalk circulation throughout the site is required although not necessarily adjacent to the curb.

Sidewalks may be eliminated under the following circumstances:

1) Private driveways/streets that are not through streets and have an entire street length less than 150 feet and access a maximum of 12 units.

2) Private driveways/streets that are not through streets which access eight (8) units or less and do not exceed 300 feet of entire street length.

3) Private drive aisles providing direct access to garages, carports and parking stalls in multi-family projects exceeding a density of ten (10) dwelling units per acre.

4) Single loaded streets may eliminate sidewalks on the side opposite the units when it is not needed to provide for a logical pedestrian
C. The City Engineer reserves the right of final determination of sidewalk locations and roadway design issues consistent with City Standards.

D. Typically, the private sidewalks, streets or driveways are dedicated as "public utility and access easements." Water, sewer, gas and electric, cable television, telephone and storm drain facilities may be included within this general easement. Utility districts may require special easement requirements.

5. DRAINAGE

A. Concrete swales between parking lot aisles are discouraged. Tipped sections with concrete curb and gutters are preferred.

B. Hydrology and hydraulic design shall be in accordance with Public Drainage Standards. Pipe sizing, material specifications and pre-fabricated structures shall be designed by a Registered Civil Engineer and are subject to approval of the City Engineer.

C. Concentrated site drainage may not surface flow across sidewalks onto public or private streets.

D. Special design shall be required for all parking lots which, by design, may retain storm waters to reduce downstream flooding.

E. Public storm drains may be included within the "general utility and access easement" if specifically approved by the City Engineer.

F. Maximum fall across parking areas shall be five percent (5%).

6. STRUCTURAL SECTION

A. Private streets shall be constructed with the same structural sections as public streets.

B. Parking lots and driveways shall be designed based upon a traffic index of 4.5 and the "R" value of the soil(s) at the project site as determined by a Registered Soils Engineer. Minimum section shall be 4" asphalt concrete. Modifications of this Standard may be made if approved by the City Engineer.

C. Truck routes through parking lots or aisles with an ADT greater than 500 shall be designed with a traffic index of 5.0. All routes leading to trash enclosures shall be designed for heavy loading, minimum 4" A.C. over 6" approved aggregate base. The level loading area in front of trash enclosures shall be concrete with a minimum thickness of 7-1/2 inches in conformance with GS-16.
7. DEFINITIONS

A. Driveway: Includes those portions of public and private property used to provide access from public right-of-way to private property and the areas on public and private property used to queue or stack arriving and departing vehicles. Driveways are the points of interface between the public/private circulation systems.

B. Traveled Way: Includes all public streets and all private streets or drives serving more than 50 units or an average daily trip load of 500 or more.

C. Residential Driveway: Includes all low use driveways for single family, duplex, twin homes, or low use driveways which do not have truck access to a trash dumpsite.

D. Low Use Driveway: Includes all driveways with an average daily trip (ADT) load less than or equal to 200, except residential driveways.

E. Medium Use Driveway: Includes all driveways with an ADT load greater than 200 and less than 500.

F. High Use Driveway: Includes all driveways with an ADT greater than or equal to 500.

NOTE: All other Standards for the City of Carlsbad shall apply to private streets. Variations from these Standards may be allowed with the approval of the City Engineer.
1. **GENERAL**

 A. All drainage design and requirements shall be in accordance with the latest City of Carlsbad BMP Design Manual (see Volume 5), Jurisdictional Runoff Management Plan (JRMP), Master Drainage and Storm Water Quality Management Plan and the requirements of the City Engineer and be based on full (build-out) development of upstream tributary basins.

 B. Public drainage facilities shall be designed to carry the ten-year six-hour storm underground and the 100-year six-hour storm between the top of curbs. All culverts shall be designed to accommodate a 100-year six-hour storm with a one foot freeboard at entry conditions such as inlets and head walls.

 C. The use of underground storm drain systems, in addition to standard curb and gutter shall be required:

 1) When flooding or street overflow during 100-year six-hour storm cannot be maintained between the top of curbs.
 2) When 100-year six-hour storm flow from future upstream development (as proposed in the existing General Plan) will cause damage to structures and improvements.
 3) When existing adequate drainage facilities are available for use (adjacent to proposed development).
 4) When more than one travel lane of arterial and collector streets would be obstructed by 10-year 6-hour storm water flow. Special consideration will be required for super-elevated streets.

 D. The use of underground storm drain systems may be required:

 1) When the water level in streets at the design storm is within 1” of top of curb.
 2) When velocity of water in streets exceeds 11 FPS.
 3) When the water travels on surface street improvements for more than 1,000’.

 E. The type of drainage facility shall be selected on the basis of physical and cultural adaptability to the proposed land use. Open channels may be considered in lieu of underground systems when the peak flow exceeds the capacity of a 48” diameter RCP. Fencing of open channels may be required as determined by the City Engineer.

 F. Permanent drainage facilities and right-of-way, including access, shall be provided from development to point of approved disposal.
G. Storm Drains constructed at a depth of 15' or greater measured from finish grade to the top of pipe or structure shall be considered deep storm drains and should be avoided if at all possible. When required, special design consideration will be required to the satisfaction of the City Engineer. Factors considered in the design will include:

1) Oversized specially designed access holes/air shafts
2) Line encasements
3) Oversizing lines
4) Increased easement requirements for maintenance access
5) Water-tight joints
6) Additional thickness of storm drain

The project designer should meet with the planchecker prior to initiation of design to review design parameters.

H. Concentrated drainage from lots or areas greater than 0.5 acres shall not be discharged to City streets unless specifically approved by the City Engineer.

I. Diversion of drainage from natural or existing basins is discouraged.

J. Drainage design shall comply with the City's Jurisdictional Urban Runoff Management Plan (JURMP) and requirements of the National Pollutant Discharge Elimination System (NPDES) permit.

2. HYDROLOGY

A. Off site, use a copy of the latest edition City 400-scale topographic mapping. Show existing culverts, cross-gutters and drainage courses based on field review. Indicate the direction of flow; clearly delineate each drainage basin showing the area and discharge and the point of concentration.

B. On site, use the grading plan. If grading is not proposed, then use a 100-scale plan or greater enlargement. Show all proposed and existing drainage facilities and drainage courses. Indicate the direction of flow. Clearly delineate each drainage basin showing the area and discharge and the point of concentration.

C. Use the charts in the San Diego County Hydrology Manual for finding the "\(T_c \)" and "\(I \)". For small areas, a five minute "\(T_c \)" may be utilized with prior approval of the City Engineer.

D. Use the existing or ultimate development, whichever gives the highest "\(C \)" factor.

E. Use the rational formula \(Q = CIA \) for watersheds less than 0.5 square mile unless an alternate method is approved by the City Engineer. For watersheds in excess of 0.5 square mile, the method of analysis shall be approved by the City Engineer prior to submitting calculations.
3. **HYDRAULICS**

A. **Street** - provide:

1) Depth of gutter flow calculation.
2) Inlet calculations.
3) Show gutter flow Q, inlet Q, and bypass Q on a plan of the street.

B. **Storm Drain Pipes and Open Channels** - provide:

1) Hydraulic loss calculations for: entrance, friction, junction, access holes, bends, angles, reduction and enlargement.
2) Analyze existing conditions upstream and downstream from proposed system, to be determined by the City Engineer on a case-by-case basis.
3) Calculate critical depth and normal depth for open channel flow conditions.
4) Design for non-silting velocity of 2 FPS in a two-year frequency storm unless otherwise approved by the City Engineer.
5) All pipes and outlets shall show HGL, velocity and Q value(s) for design storm.
6) Confluence angles shall be maintained between 45° and 90° from the main upstream flow. Flows shall not oppose main line flows.

4. **INLETS**

A. Curb inlets at a sump condition should be designated for two CFS per lineal foot of opening when headwater may rise to the top of curb.

B. Curb inlets on a continuous grade should be designed based on the following equation:

\[Q = 0.7 \ L \ (a + y)^{3/2} \]

Where:
- \(y \) = depth of flow in approach gutter in feet
- \(a \) = depth of depression of flow line at inlet in feet
- \(L \) = length of clear opening in feet (maximum 30 feet)
- \(Q \) = flow in CFS, use 100-year design storm minimum

C. Grated inlets should be avoided. When necessary, the design should be based on the Bureau of Public Roads Nomographs (now known as the Federal Highway Administration). All grated inlets shall be bicycle proof.

D. All catch basins shall have an access hole in the top unless access through the grate section satisfactory to the City Engineer is provided.
E. Catch basins/curb inlets shall be located so as to eliminate, whenever possible, cross gutters. Catch basins/curb inlets shall not be located within 5’ of any curb return or driveway.

F. Minimum connector pipe for public drainage systems shall be 18”.

G. Flow through inlets may be used when pipe size is 24” or less and open channel flow characteristics exist.

5. STORM DRAINS

A. Minimum pipe slope shall be .005 (.5%) unless otherwise approved by the City Engineer.

B. Minimum storm drain, within public right-of-way, size shall be 18” diameter.

C. Provide cleanouts at 300’ maximum spacing, at angle points and at breaks in grade greater than 1%. For pipes 48” in diameter and larger, a maximum spacing of 500’ may be used.

D. When the storm drain clean-out Type A dimension of “V” less “Z” is greater than 18”, a storm drain clean-out Type B shall be used.

E. The material for storm drains shall be reinforced concrete pipe designed in conformance with San Diego County Flood Control District’s design criteria, as modified by Carlsbad Standard Specifications. Corrugated steel pipe shall not be used. Plastic/rubber collars shall be prohibited.

F. Horizontal curve design shall conform to manufacturer recommended specifications. Vertical curves require prior approval from the City Engineer.

G. The pipe invert elevations, slope, pipe profile line and hydraulic grade line for design flows shall be delineated on the mylar of the improvement plans. Any utilities crossing the storm drain shall also be delineated.

The strength classification of any pipe shall be shown on the plans. Minimum D-load for RCP shall be 1350 in all City streets or future right-of-way. Minimum D-load for depths less than 2’, if allowed, shall be 2000 or greater.

H. For all drainage designs not covered in these Standards, the current San Diego County Hydrology and Design and Procedure Manuals shall be used.

I. For storm drain discharging into unprotected or natural channel, proper energy dissipation measures shall be installed to prevent damage to the channel or erosion. In cases of limited access or outlet velocities greater than 18 fps, a concrete energy dissipater per SDRS D-41 will be required.
J. The use of detention basins to even out storm peaks and reduce piping is permitted with substantiating engineering calculation and proper maintenance agreements. Detention basins shall be fenced.

K. Desiltation measures for silt caused by development shall be provided and cleaned regularly during the rainy season (October 1 to April 30) and after major rainfall as required by the City Engineer or designee. Adequate storage capacity as determined by the City Engineer shall be maintained at all times.

L. Protection of downstream or adjacent properties from incremental flows (caused by change from an undeveloped to a developed site) shall be provided. Such flows shall not be concentrated and directed across unprotected adjacent properties unless an easement and storm drains or channels to contain flows are provided.

M. Unprotected downstream channels shall have erosion and grade control structures installed to prevent degradation, erosion, alteration or downcutting of the channel banks.

N. Storm drain pipes designed for flow meeting or exceeding 20 feet per second will require additional cover over invert reinforcing steel as approved by the City Engineer.

O. Storm drain pipe under pressure flow for the design storm, i.e., HGL above the soffit of the pipe, shall meet the requirements of ASTM C76, C361, C443 for water-tight joints in the sections of pipe calculated to be under pressure and an additional safety length beyond the pressure flow point. Such safety length shall be determined to the satisfaction of the City Engineer taking into consideration such factors as pipe diameter, Q, and velocity.

P. An all-weather access road from a paved public right-of-way shall be constructed to all drainage and utility improvements. The following design parameters are required: Maximum grade 14%, 15 MPH speed, gated entry, minimum paved width 12 feet, 38' minimum radius, paving shall be a minimum of 4" AC over 4" Class II AB, turnaround required if over 300'. Work areas should be provided as approved by the plan checker. Access roads should be shown on the tentative project approval to ensure adequate environmental review.

Q. Engineers are encouraged to gravity drain all lots to the street without use of a yard drain system. On projects with new street improvements proposed, a curb outlet per SDRSD D-27 shall be provided for single-family residential lots to allow yard drains to connect to the streets gutter.
CHAPTER 6 – DESIGN CRITERIA FOR GRAVITY SEWER LINES AND APPURTENNANCES

Prior to preparation of improvement plans, Engineer-of-work shall submit a rough layout of system for review and approval by the City Engineer.

1. SEWER MAIN DEPTH AND SIZE

 A. Sewer main depth and size shall be as shown below unless approved by the City Engineer.

 B. Minimum depth, finish grade to top of pipe: 6 feet

 C. Maximum depth, finish grade to top of pipe: 15 feet

 D. Design calculations shall be submitted to verify size and bedding design. (Manning “N” PVC = 0.011 is norm).

 E. Minimum size of mainline shall be 8”.

 F. 6” main line may be allowed on cul-de-sac streets with a maximum of 10 units.

 G. All sewer laterals and main line invert elevations shall be shown in profile on the improvement plans and shall include stations, slope, and distance.

 H. All sewer mains over 15” in diameter shall require special design subject to City Engineer approval.

2. SEWER LATERAL DEPTH AND SIZE

 A. 4” minimum diameter for single-family residence.

 B. 6” minimum diameter for all other use.

 C. Desirable depth at property line is 5 feet (top of pipe to finish grade @ top of curb).

3. PIPELINE MATERIAL TYPES

 A. Gravity sewer pipe and fittings shall have PVC conforming to ASTM D3034 for diameters 4” – 15” and ASTM F 679 for 18” – 24”, with integral-bell gasketed joints (gasket and spigot end joint design). Pipe shall be made of PVC plastic having a cell classification of 12454-B or 12364-B as defined in ASTM D 1784 and shall have SDR of 35 and a minimum stiffness of 46 psi according to ASTM D 2412.

 B. All fittings and accessories shall be as manufactured and finished by the pipe supplier or approved equal and have bell and spigot configurations compatible with that of the pipe.
C. PVC pipe joints shall be elastomeric gasket joints type conforming to Standard Specifications for Public Works (Greenbook) most recent edition. Rubber gaskets shall be factory installed and conform to ASTM F 477. Pipe joints shall have been tested and meet watertight performance requirements of ASTM D 3212, "Joints for Pipe Using Flexible Elastomeric Seals."

D. PVC C-900 shall be used for gravity sewer pipelines with depths equal or greater than 15 feet. Engineering calculations shall be provided to verify that the pipe material will accommodate the design depth.

E. Use of other pipe and fitting materials and types may be required by the City Engineer to meet specific conditions during design or construction.

F. Service connections to the sewer main shall be watertight and not protrude into the sewer pipe. All materials used to make the service connections shall be compatible with each other and with the pipe material to be joined and shall be corrosion proof.

G. Couplings used for repair, or transition to dissimilar pipe materials shall be approved by the City Engineer and provide corrosion proof watertight seal.

4. DESIGN PARAMETERS FOR GRAVITY SEWER MAIN SLOPE, FLOW AND DEMAND

A. Gravity sewer pipelines shall be designed for a minimum velocity of 2 feet/second. Velocity, unless otherwise stated, shall be calculated from peak dry weather flow.

B. Pipeline slopes shall satisfy the minimum velocity requirement aforementioned. Maximum velocities greater than 10 ft/second should be avoided.

Slopes for Specific Pipe Sizes 8 through 12-inch diameter:

1) 8" minimum 0.40% desirable 0.50%
2) 10" minimum 0.28% desirable 0.40%
3) 12" minimum 0.21% desirable 0.30%

Slopes for larger than 12-inch diameter pipe shall be designed to meet flow and velocity criteria and require specific approval of the City Engineer. Pipelines with horizontal curvature will require increase slope to achieve minimum required velocities.

C. Gravity pipelines with diameters of 12" and less shall be designed to flow at depths of 0.5D during peak hour dry weather flow. Gravity pipelines with diameters greater than 12" shall be designed to flow at depths of 0.75D during peak hour dry weather flow.
D. Peak hour sewer flow rates do not include infiltration or inflow (I/I). Infiltration is defined as the addition of groundwater into the sewer collection system and inflow is the addition of storm water into the sewer collection system. Because sewer collection system I/I is dependent on a number of factors including season, age of system, type of pipe material and joints, root intrusion, and presence of storm water system, the I/I flow rates will vary from system to system. The design of sewer pipelines connecting to sewer systems known to have I/I, or are susceptible to I/I, shall utilize peak wet weather flow estimates from the City of Carlsbad Sewer Master Plan or perform wet weather flow monitoring as directed by the City Engineer. Gravity pipelines designed to convey wet weather flow shall not exceed 0.90D for peak hour wet weather flow.

E. Flowrate Generation

1) An Equivalent Dwelling Unit (EDU) = 220 gal/day, Average Daily Flow (ADF)

2) For ADF less than 100,000 gal/day, a peaking factor (PF) of 2.5 multiplied times the ADF shall be used to determine Peak Daily Flows (PDF). PDF = ADF x 2.5
 a) Residential: Single Family Residence = 1 EDU
 b) Commercial Property: 1 EDU/1,800 ft2 (building space)
 i) To convert raw land to square feet of building space, assume 30% coverage. This could vary significantly dependent development constraints.
 ii) To convert improved pads to square feet of building space, assume 40% of coverage.
 3) Industrial Property: 1 EDU/5,000 ft2 (warehouse space)
 1 EDU/1,800 ft2 (office space)
 a) To convert raw land to square feet of building space, assume 30% coverage. This could vary significantly dependent issues such as environmental restrictions.
 b) To convert improved pads to square feet of building space, assume 40% of coverage.
 c) Assume 60% of building space is warehouse, and 40% is office space.

5. HORIZONTAL AND VERTICAL LAYOUT

A. Streets: See City of Carlsbad Standard Drawing No. GS-6 for location.

B. Alley: Main to centerline shall be a minimum of three feet (3') offset.
C. Private Street: Shall require special design and conditions. Easement shall be 20 feet minimum.

D. Horizontal Curve: SDR 35, PVC pipe may be curved horizontally through longitudinal bending with the following limitation:

<table>
<thead>
<tr>
<th>Pipe Diameter (SDR 35)</th>
<th>Minimum Radius of Curvature</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-inch</td>
<td>150 feet</td>
</tr>
<tr>
<td>8-inch</td>
<td>200 feet</td>
</tr>
<tr>
<td>10-inch</td>
<td>250 feet</td>
</tr>
<tr>
<td>12-inch</td>
<td>300 feet</td>
</tr>
<tr>
<td>15-inch</td>
<td>375 feet</td>
</tr>
</tbody>
</table>

City Engineer shall approve curvatures for larger diameter pipe.

E. Vertical Curve: Vertical curves shall be permitted only when specifically approved by the City Engineer. A detailed design drawing shall be required for review and approval.

F. Utility Clearances: Show all underground utilities in both plan and profile. Provide minimum separation per the State Department of Health Services "GUIDANCE MEMO NO. 2003-02: GUIDANCE CRITERIA FOR THE SEPARATION OF WATER MAINS AND NON-POTABLE PIPELINES".

G. Manholes: Shall be located at areas described as follows:

1) Maximum spacing of manholes shall be three hundred fifty feet (350’) for mains twelve inches (12”) and smaller and five hundred feet (500’) for mains over twelve inches (12”) unless otherwise approved by the City Engineer.

2) Install manholes at all changes of slope that exceeds 2% and show inlet and outlet inverts on all manholes.

3) Install manholes at all changes in horizontal direction.

4) Install manholes at all intersections of mains.

5) Install manholes at changes of pipe sizes.

6) Install manholes at the end of all sewer mains.

7) All standard manholes shall be a minimum of five feet (5’) in diameter with no steps. Manholes shall be sequentially numbered on the plans with manhole numbers beginning at the
lowest invert. Three-foot stubs shall be provided for future tie-ins and main extensions.

8) Manholes shall be PVC lined per Std. Dwg. S-1A when: depth is 15-feet or greater; slope of sewer pipe coming into the manhole is greater than 7%; all force main discharge manholes; the immediate upstream and downstream manholes of inverted siphons; drop manholes; on sewer lines 15-inch and greater; when required by the City Engineer.

9) Where there is a slope change from steep to flat of 5% or greater, the manhole at the grade change and the next manhole upstream shall be PVC lined.

10) Install manholes for all lateral connection in pipelines 15-inch diameter and larger.

11) When intercepting flows from smaller pipelines in manholes, set invert of a smaller main at ¾ of the depth of the larger main.

12) Locking manhole lids may be required in unpaved areas as directed by the City Engineer.

13) The top cone shall be 6" below finished subgrade. Circular steel covers shall be placed on the manholes during subgrade preparation and base rock grade work, in order to keep the sewer system clean. Additionally, roadwork above live sewer manholes shall require plywood type sheeting be placed inside the manhole and above the channel to keep any debris from entering the sewer line.

14) In unpaved areas, sewer manhole frames and covers shall be set 6" above finished grade with concrete ring and marker post marked "sewer" per Standard Drawing S-9.

H. Cleanouts: Extend beyond permanent pavement when street is a temporary dead end. See Standard Drawing No. S-6 for type of cap and box.

I. Laterals: Laterals shall be constructed per Std. Dwg. No. S-7. Minimum horizontal distance from water service, fire hydrants, light standards, electrical transformers, etc., is 5 feet. Desirable horizontal distance is 10 feet.

1) Install at right angle or radial to the main.

2) Laterals shall not be located in driveways.

3) No connections shall be permitted on laterals other than provided in Standard Drawing No. S-7.

5) If the lowest plumbing fixture on a property is lower than 2-feet above the nearest upstream manhole cover, then the owner must provide a Backwater Valve to prevent a sewage backup onto the property. The valve must be installed in a valve box for easy access and be visible from the public right-of-way. The property owner shall be responsible for the installation and maintenance of the sewer Backwater Valve. The Backwater Valve shall be shown on the precise grading and improvement plans.

6) The Contractor shall install sewer laterals using wye fittings sized and located as shown on the Approved Plans.

7) Laterals shall be bedded, backfilled and compacted in the same manner as the sewer main they are connected to.

J. Steep Slope Protection:

1) Sewer pipelines on 20 percent slopes or greater shall be anchored securely with a cut-off wall per RSD SP-05 or SP-07, spaced as follows:

 a) Not over 36 feet center to center on grades 20 percent and up to 35 percent;

 b) Not over 24 feet center to center on grades 35 percent and up to 50 percent; and

 c) Not over 16 feet center to center on grades 50 percent and over.

K. All sewer mains, not located within the public right-of-way shall be provided with a minimum 20-foot wide sewer easement. In some special cases, a wider easement may be required; the City Engineer shall determine size. All easements shall be easily accessible to City maintenance equipment with all-weather roadways.

6. CONNECTIONS TO EXISTING MANHOLES

New connections to existing manholes where stubs have not been provided shall be made by core drilling through the walls and base as directed by the City Engineer or their representative. If intercepting flows from smaller pipelines in manholes, set invert of a smaller main at ¾ of the depth of the larger main. Special care shall be used to facilitate the flow when forming the tributary channel into the existing channel.

7. MISCELLANEOUS REQUIREMENTS
A. The City of Carlsbad will only maintain sewer mains located in dedicated City right-of-ways and easements which have all weather vehicular access.

B. New sewer lines and appurtenances shall remain plugged and/or disconnected until the City authorizes its use.

C. Maintenance of sewer laterals from the main to the building shall be the responsibility of the property owner.

D. Sewer laterals constructed from the property line to the building shall be per the Uniform Building Code.
 1) The vertical cleanout shall be stubbed and capped 3 feet above rough grade during grading and/or construction of project.
 2) All sewer lateral taps on existing sewer lines shall be by "shewer" or approved equal. All work will be inspected by a City Representative.
 3) A three-inch (3") high "S" shall be stamped on the curb face at all sewer lateral locations.

GENERAL GUIDELINES FOR SEWER FORCE MAINS

1. The developers engineer shall submit a preliminary design report showing the alignment, pipe size, pressure conditions, pipe materials, a rough layout plan including surge protection design and flow analysis for review and approval by the City Engineer prior to the preparation of improvement plans.

2. Minimum cover of sewer force mains shall be 48 inches (48") from top of pipe to ultimate finished grade. Top of pipe profile shall be shown on the improvement plans.

3. Show all other underground utilities in both plan and profile. Provide minimum clearances per the State of California Department of Public Health (CDPH) "GUIDANCE MEMO NO. 2003-02: GUIDANCE CRITERIA FOR THE SEPARATION OF WATER MAINS AND NON-POTABLE PIPELINES".

4. Sewer force mains shall be High Density Polyethylene (HDPE) manufactured in accordance with ASTM F714, or ductile iron pipe with polyethylene liner, and exterior corrosion control as approved by the City Engineer.

5. Where possible, force mains shall be designed with a continuous uphill slope without high points so that air-release valves are not required on the force mains. If this is not possible, provide air-release valves manufactured by Vent-O-Mat.

6. Dual force mains may be required at the discretion of the City Engineer where maintenance will be required on a regular basis or due to environmental constraints.
7. At the discretion of the City Engineer, Force mains longer than 1-mile or with excessive detention times may require the use of chemical addition to prevent odors at the discharge location of the force main.

GENERAL GUIDELINES FOR SEWER LIFT STATIONS

1. Sewer Lift Stations shall not be incorporated into the City’s sewer system and shall be avoided if at all possible, unless deemed essential by the City Engineer.

2. The developer’s engineer shall meet with the City Engineer prior to the preparation of plans to inquire about the feasibility of utilizing a lift station for a given area.

3. The lift station design shall be approved by the City Engineer and all component submittals shall go through the City Engineer for review.

4. Prepare a preliminary design report that shall be submitted to the City for review and approval. The preliminary engineering design report shall include, at a minimum, the description of the design criteria to be utilized, preliminary flow computations, design calculations, calculated systems curves, water hammer (surge) protection analysis/recommendation, identification of right-of-way requirements, number of property owners involved, listing of permit requirements, geotechnical investigation and cost estimate based on unit costs for major elements of work. In addition, the following design elements shall be developed:

 a) Site Development
 b) Structural Design
 c) Architectural Design
 d) Hydraulic Analysis
 e) Mechanical Design
 f) Electrical Design
 g) Instrumentation and Process Control
 h) Corrosion Control
 i) Odor Control
 j) Noise Control

The hydraulic analysis shall include calculations of the system curve. The system curve shall be plotted on the pump curve with the operating point identified. Every effort shall be made to select a pump that operates at its best efficiency point. Peak and average flows shall be considered when selecting the appropriate pump. Pump manufacturer data sheets shall also be included in the preliminary design report submission.

If the pump station is being designed with built-in expansion capability, an economic analysis shall be submitted. The analysis shall consider capital costs as well as the operational cost of the lift station. Design assumptions (e.g. cost of electricity, cost of money) shall be determined in consultation with the City of Carlsbad.
5. General Design Requirements for Sewer Lift Stations smaller than 3 MGD shall be as follows:

a) Lift Stations shall be designed to convey the ultimate peak hour sewer flow rate including inflow and infiltration and meeting the latest requirements of the “Hydraulic Institute”. No premanufactured or prefabricated lift stations will be permitted.

b) Lift stations shall be of the “dry-pit/wet-well” type unless approved otherwise by the City/District Engineer. Wet wells shall be lined with “T-LOCK” PVC.

c) Lift stations shall have a minimum of 2 pumps of equal size (1 duty and 1 standby). Lift stations with more than 1 Duty pump shall also provide a minimum of 1 standby pump of equal size. Additional standby pumps may be required for lift stations located near environmentally sensitive areas. Pump selection shall be approved by the City Engineer.

d) Lift Stations larger than 1 MGD shall utilize an onsite odor control system. Smaller lift stations may require odor control as determined by the City Engineer.

e) Comminutors shall be installed on the influent sewer to wet wells at all lift stations.

f) An emergency bypass connection shall be provided for connection to portable pumping equipment.

g) An emergency generator shall be provided to supply backup power (100%) to all lift station facilities.

h) Lift Stations shall be equipped with a magnetic flow meter and an alarm system installed on the discharge force main that shall be compatible with the City’s telemetry system.

i) Manifold pipe shall consist of ductile iron pipe of suitable pressure class.

j) Appropriate lighting and ventilation with a minimum of 12 air changes per hour shall be included.

k) Suitable vehicle access and security fencing will be provided.

l) System head curves shall be developed for two “C” valves, C=120 to ensure adequate flow, and a C=150 for ensuring adequate driver horsepower and pump characteristics.

m) A surge analysis studying the force main and the related sewer lift station shall be performed and submitted to the City for review and approval.
Blank page for 2-sided printing
CHAPTER 7 - GRADING, SITE DRAINAGE AND LOW IMPACT DEVELOPMENT (LID) STANDARDS

1. SOILS REPORTS

A preliminary soils report is required with the submittal of all grading plans. The City Engineer may waive the requirement for the preliminary report for grading projects which have cut or fill with a height of five feet or less or where it can be shown that the preliminary report is not needed to ensure the protection of the health, safety or welfare of the public. All soil reports shall be bound within sturdy covers and signed and sealed by a registered engineer competent in the field of soils engineering. The report shall be neat and logically ordered and include an index, the City project ID, name and location of the project, the name, address and telephone number of the firm which prepared the report and the date of the report. Each page of the report shall be numbered.

The preliminary soils report must be current and must reference the specific project proposed for development. Reports over one year old at time of grading plan submittal and/or reports which reference a different grading proposal must be made current by submittal of an amended report or by submittal of a signed and sealed letter from the soils engineer stating that the findings and conclusions of the previous report are current and valid for the present proposed project.

The preliminary soils report shall at a minimum include the following:

A. A written description of the proposed project or grading work to be done and a preliminary site plan;

B. A location map and geologic history of the site and surrounding region including a synopsis of the existing soils condition, description of the type and extent of the existing vegetation, description of the seismic setting and proximity of nearby faults, and presence of water on the site;

C. A description of the testing done onsite including number and location of the test holes, a map showing the location of the test sites, type and depth of the holes, depth of any found water table, evidence of seismic or landslide activity, reason for performing the test and explanation of the test results;

D. Soil profiles;

E. A description of the laboratory testing done on soil samples including a description of where the samples came from, reason for performing the test, test results and explanation of the test results;

F. Calculations, if any, needed to determine the stability of any slopes which exceed twenty feet in height or which are steeper than two horizontal to one vertical;

G. A summary of the conclusions and recommendations as to the suitability of the site for the proposed project, any building restrictions, any proposed mitigation measures, footing or building foundation recommendations, type and placement of any subsurface drains or any other recommendations as may be determined by the soils engineer;
H. A set of recommended specifications for the grading work to be done on the site.

2. SLOPES

A. No cut or fill slope shall be steeper than two horizontal to one vertical unless specifically approved by the City Engineer. The City Engineer may approve a slope steeper than two to one under the following conditions:

1) The cut or fill at a steeper slope will be stable and not create a hazard to public or private property;

2) The steeper slope is determined by the City Engineer to be necessary to reduce the overall environmental or aesthetic impacts of the grading project;

3) The overall project grading is consistent with the provisions of the Hillside Grading Ordinance;

4) A soils report prepared by a registered engineer qualified in the field of soils engineering is submitted which report shall provide calculations indicating that the proposed slope will have a factor of safety of 1.5 or better for both deep seated and surficial failures under saturated soil conditions.

B. Cut and fill slopes shall be set back from site boundaries in accordance with City of Carlsbad Standard Drawing GS-14.

C. Buildings shall be set back from cut or fill slopes in accordance with City of Carlsbad Standard Drawing GS-15, or as specifically approved by the City Engineer.

D. Terrace drains shall be installed on all manufactured slopes exceeding thirty feet in height. The City Engineer may waive this requirement for slopes with a longitudinal length of one hundred feet or less, or upon the recommendation of a registered soils engineer or geologist that such terrace drain is not necessary for stability or erosion protection. Terrace drains shall be designed to prevent deposition of sand and/or other soil materials within the concrete drain. The minimum longitudinal slope shall be two percent and maximum slope shall be twelve percent. Drainage terraces exceeding eight feet in width need only be paved for a width of eight feet, provided such pavement provides for a minimum channel depth of one foot. Down drains or drainage outlets shall be provided at approximately three hundred foot intervals along the drainage terrace. All such down drains or outlets shall be designed to safely convey the intercepted waters to the point of disposal.
3. **SITE DRAINAGE**

A. All drainage facilities shall be designed to carry surface waters to the nearest practical street, storm drain, or natural water course approved by the City Engineer. When discharging concentrated flows onto natural ground, the engineer-of-work shall provide appropriate calculations to determine the erosive effects at the point of discharge and immediately downstream from the discharge point. If erosive velocities will occur at the discharge point or immediately downstream, then an appropriately designed rip-rap field or other energy dissipating device shall be installed to mitigate the erosive effects.

B. Graded building pads shall have a minimum slope of one percent towards an adjoining street or an approved drainage course. A lesser slope may be approved by the City Engineer for sites graded in relatively flat terrain, or where special drainage provisions are made. In such cases, the City Engineer may require a supporting recommendation by a registered soils engineer.

C. Berms, swales or other methods and devices shall be provided at the top of cut and fill slopes to prevent surface waters from overflowing onto and damaging the slope face. Special drainage provisions shall be made where a building or structure exists within five feet of the top of a slope.

4. **LOW IMPACT DEVELOPMENT (LID)**

A. All development projects shall be developed with LID Integrated Management Practices (IMPs) to mimic the site’s natural hydrological function. LID uses decentralized, site-based planning and design strategies to manage the quantity and quality of storm water runoff. LID attempts to reduce the amount of runoff by mimicking the natural hydrologic function of the site. Lid focuses on minimizing impervious surfaces and promoting infiltration and evaporation of runoff before it can leave the location of origination. Using small, economical landscape features, LID techniques work as a system to filter, slow, evaporate, and infiltrate surface runoff at the source (reference Mull, K.K., (2005, December) Selling Low Impact Development: Audiences, Messages, and Media).

B. LID Design shall generally be in accordance with the latest edition of the County of San Diego Low Impact Development Handbook, Stormwater Management Strategies and Low Impact Development Appendices, San Diego Considerations and LID Fact Sheets. For additional literature on LID and best management practices consult the reference materials listed in the latest edition of the County of San Diego Low Impact Development Literature Index.

C. Stormwater infiltration plans, including permeable pavement, should be reviewed by a qualified, licensed professional to provide a professional opinion regarding the potential adverse geological conditions created by implementation of the plans. Geotechnical conditions such as: slope
stability, expansive soils, compressible soils, seepage, groundwater level, and loss of foundation or pavement subgrade strength should be addressed, and where appropriate, mitigation recommendations should be provided. The impact on existing, proposed, and future improvements including buildings, roads and manufactured slopes must be included in the review.

D. For projects subject to Priority Development Project requirements, a Storm Water Quality Management Plan (SWQMP) prepared in accordance with Title 15 of the Carlsbad Municipal Code and the City's BMP Design Manual (see Volume 5 of Engineering Standards) shall be submitted concurrent with all development permits, as triggered by thresholds in the Municipal Permit, latest version. The SWQMP shall describe in detail all proposed LID IMPs to be incorporated into the site design for the proposed development.

E. Engineer shall prepare and submit a Single Sheet BMP (SSBMP) plan prepared in accordance with the Storm Water Quality Management Plan (SWQMP). Refer to Volume 5 Any structural BMP plan shall be clearly labeled as such on construction plan (grading, improvement, landscape or building) highlighting the BMPs incorporated within the respective plan. Refer to the latest template title sheets available on the city’s website. The developer/owner/applicant shall be responsible for the construction and/or implementation of all BMPs as shown on the post construction BMP site plan whether or not such BMPs are reflected on the respective construction plans. No changes are to be made to the SSBMP site plan without the express approval of the City Engineer or his/her designated representative.

F. Bioretention basins designed as structural BMP shall include educational signage regarding their purpose as a permanent treatment facility for water quality purposes. Signage locations shall be listed in the SSBMP Exhibit.